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ABSTRACT

The Bioluminescence Heterozygous Genome Assembler

Jared C. Price
Department of Computer Science, BYU

Master of Science

High-throughput DNA sequencing technologies are currently revolutionizing the fields
of biology and medicine by elucidating the structure and function of the components of life.
Modern DNA sequencing machines typically produce relatively short reads of DNA which are
then assembled by software in an attempt to produce a representation of the entire genome.
Due to the complex structure of all but the smallest genomes, especially the abundant
presence of exact or almost exact repeats, all genome assemblers introduce errors into the
final sequence and output a relatively large set of contigs instead of full-length chromosomes
(a contig is a DNA sequence built from the overlaps between many reads). These problems
are dramatically worse when homologous copies of the same chromosome differ substantially.
Currently such genomes are usually avoided as assembly targets and, when they are not
avoided, they generally produce assemblies of relatively low quality. An improved algorithm
for the assembly of such data would dramatically improve our understanding of the genetics
of a large class of organisms.

We present a unique algorithm for the assembly of diploid genomes which have a high
degree of variation between homologous chromosomes. The approach uses coverage, graph
patterns and machine-learning classification to identify haplotype-specific sequences in the
input reads. It then uses these haplotype-specific markers to guide an improved assembly.
We validate the approach with a large experiment that isolates and elucidates the effect of
single nucleotide polymorphisms (SNPs) on genome assembly more clearly than any previous
study. The experiment conclusively demonstrates that the Bioluminescence heterozygous
genome assembler produces dramatically longer contigs with fewer haplotype-switch errors
than competing algorithms under conditions of high heterozygosity.

Keywords: genome, genome assembly, polymorphic, polymorphism, heterozygous, haplotype,
algorithm
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Chapter 1

Problem Definition and Importance

The discovery of deoxyribonucleic acid (DNA) as the mechanism of heredity [1] is

among the most significant discoveries in the history of science. It has already revolutionized

our understanding of life and our efforts to sustain it, yet this revolution is clearly still in its

infancy. In this chapter we briefly outline the improvements in human knowledge that are

currently being realized through the study of DNA, and molecular biology in general, and the

staggering promise this knowledge holds for dramatically improving human life with respect

to medicine, nutrition and a host of other issues. We discuss at some length the central

role algorithms are playing in this revolution and we introduce the whole genome assembly

problem. In particular we introduce the whole genome assembly problem as it relates to

species which have particularly high variation between homologous chromosomes and we

discuss how an improved algorithm for this problem could promote better understanding of

complex species and promote improvements in medicine, agriculture and more.

In the mind of a computer scientist, DNA can be usefully thought of as code, a

remarkable kind of code expressing algorithms for the construction and regulation of proteins,

and by extension, the construction and manipulation of life. Knowing how to program in

this new language enables the engineering of life and its components. For example, it is now

routine to harvest insulin from bacteria which have been engineered to produce it and we

are fast approaching the routine production of transplant organs built from the patient’s

own DNA. As with more familiar algorithmic languages, slight variations in syntax can have

dramatic semantic results. For example, the deletion or insertion of a single nucleotide in a

1
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DNA molecule can dramatically change the sequence’s meaning. For this reason, algorithms

which infer the sequence of nucleotides in a genome must put an extraordinarily high value

on accuracy.

Algorithms have become an essential part of the modern biologist’s daily toolkit. The

human genome is over 3 billion nucleotides long and encodes thousands of proteins which

interact with each other, and with the body’s incredibly complex environment, to produce the

functions of life. Complexity is around every corner and the best tools we have in the modern

world for managing this complexity are computers. For this reason, modern biology has

necessarily become a computational science. Dr. Leroy Hood, 2012 winner of the National

Medal of Science, put it this way “Biological information is divided into the digital information

of the genome and the environmental cues that arise outside the genome. Integration of

these types of information leads to the dynamic execution of instructions associated with the

development of organisms and their physiological responses to their environments [13].”

We are in the midst of a profound revolution in human knowledge with respect to

Biology and the mechanisms of life. This revolution is being enabled in no small part by

advanced algorithms capable of elucidating complex biological structures and the even more

complex interaction-networks between these components. The outcomes of this revolution

are already profound and becoming more profound with each passing year. In the last few

decades we have succeeded in determining, to a high degree of accuracy, the complete genome

sequence of hundreds of important organisms, including the human genome [16, 31]. These

blueprints have enabled us to study the components of life with an unprecedented level of

completeness.

These developments have spawned the new field of computational biology in which

computer experts build complex models to understand and predict the behavior of large

biological networks. This field is rapidly ushering in the era of personalized medicine [10] in

which millions of data points about each patient, including their personal genome sequence

2



www.manaraa.com

and protein profile, can be leveraged to make more accurate diagnoses and prescribe more

effective treatments.

In addition, improved understanding of the genetics of plants and micro-organisms

provides an important avenue for the improvement of millions of lives by providing higher-

nutrient foods to those in impoverished countries, helping to reduce greenhouse gases via

bio-engineering, decreased drug development time, and a host of other issues.

Algorithms have a significant role to play in all of this. For example, Eugene Myers, a

Computer Science PhD, dramatically accelerated the publication time of the human genome

draft sequence by writing a genome assembly algorithm capable of inferring long contiguous

sequences of DNA from much, much, smaller pieces that he stitched together in silico [22, 31].

Myers and his colleagues called their new approach the whole-genome shotgun technique [33],

because it sequenced small, randomly-obtained, pieces of the genome and relied heavily on

the accuracy of Myers’ algorithm to reconstruct the original genomic sequence from which

these small, randomly-obtained, pieces were drawn (see Figure 1.1).

When Myers first introduced the idea, many scientists believed the problem was

simply too complex and could not be adequately solved. Myers’ proved the critics wrong in a

landmark publication which used his whole-genome shotgun technique to produce a draft

sequence of the Drosophila melanogaster genome [22]. It was a watershed moment in the

history of genomics and was enabled in large part by computer scientists.

In addition to genome assembly, algorithms have contributed to nearly every aspect of

modern biology. Evolutionary relationships between organisms are now studied extensively

using advanced algorithms for phylogeny estimation [11]. Complex protein interaction

networks are now examined using detailed computational models of cells and their many

components.

Biology has also given back to computer science by suggesting interesting ways to solve

problems that mimic biological processes. One important example is the class of algorithms

now known as genetic algorithms which subject populations of solutions to random mutation

3
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Figure 1.1: A simplified and very high-level overview of the whole-genome shotgun technique
for genome assembly. Image reused from [25].

and “evolve” an optimized solution by subjecting the members of the population to survival

pressures in the form of “fitness functions.”

1.1 Genome assembly

In this work we will focus on the whole-genome assembly problem. More precisely, we will

focus on the whole genome assembly problem as it relates to genomes that have large amounts

of variation between pairs of homologous chromosomes. I will define the de novo reference

genome assembly problem (DNRGAP) as

g : R→ C (1.1)

where Re ∈ R is a large set of short DNA reads (usually less than 1000 nucleotides in

length) sampled from a target genome of interest and Ce ∈ C is a set of contigs (longer

4
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sequences of DNA inferred from the information in Re to be present in the target genome).

DNRGAP is differentiated from the more general genome assembly problem by a couple of

important properties. First, no reference genome for the organism can be used to solve a

problem instance (hence de novo). Second, algorithms solving this problem aim to produce a

single reference sequence when multiple homologous sequences are present in the genome.

For example, if an organism has two homologous copies of a chromosome, algorithms for

DNRGAP would attempt to output a single sequence representing both homologs.

It is common in assembly literature to use the term contig to refer to an assembled

sequence that has no gaps (unknown bases) longer than a base or two, and to use the term

scaffold to refer to a longer sequence with relatively large gaps of approximated size. In the

definition of DNRGAP given above, an instance of Ce is intended to include both contigs

and scaffolds. Finally, in a strict sense, the problem definition given above (because of the

use of function notation) does not allow the use of non-deterministic assembly algorithms

which cannot be guaranteed to map a specific input Re to a specific Ce across multiple runs

of the algorithm. For this reason I will explicitly clarify that the problem definition is not

intended to preclude non-deterministic solutions.

The algorithm presented here introduces a novel approach for improving the contiguity

and accuracy of algorithms for DNRGAP in the context of reads sampled from a highly

polymorphic diploid individual. It is well understood that high polymorphism in the target

genome is a source of assembly fragmentation and assembly error. However, good general-

purpose solutions for this problem are still lacking as evidenced by the fact that nearly all

published genomes involving highly-polymorphic sequence data include sections devoted

to project-specific algorithms. Reference assemblies of polymorphic species are much more

difficult to produce than their homozygous counterparts and are subject to a number of

assembly errors. For example, two polymorphic alleles (different versions of a gene occupying

the same locus) may be erroneously represented as paralogs (homologous sequences occupying

different loci through gene duplication). Additionally, because algorithms for DNRGAP

5
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attempt to produce a single representation of each locus, these representations can be

mixtures of the two true haplotypes, producing contigs which are not actually present on

either haplotype.

Solving DNRGAP would allow the genome assembly of a large class of organisms

that are currently typically skipped over as targets for genome assembly simply because

the difficulty of assembling the organisms is currently too great. It would also enhance our

understanding of the true diversity between haplotypes in a wide array of species. It would

give us a better understanding of the genes, proteins and regulatory mechanisms of a large

class of highly polymorphic species which would in turn allow us to use this understanding

to improve medicine, agriculture, and a host of other fields.

6
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Chapter 2

Related Work

The body of related work can be organized into 4 classes, each of which is defined

and discussed in its own subsection. Section 2.1 describes general-purpose algorithms for

DNRGAP, and slight variations of the problem. Section 2.2 describes heterozygous genome

assembly projects where the available tools were insufficient for producing a quality assembly.

In each of these projects novel algorithms had to be developed to compensate for the

weaknesses of the general-purpose solutions. Section 2.3 discusses algorithms for the inference

of haplotypes when a reference genome is already available. Section 2.4 discusses genome

assembly algorithms that specifically target polymorphic species.

2.1 General-purpose genome assembly algorithms

Algorithms for general-purpose genome assembly come in two major varieties: (1) overlap-

layout-consensus (OLC) algorithms and (2) algorithms based on de Bruijn graphs.

The first step in the OLC approach is to calculate a pairwise alignment for each possible

pair of reads. In the naive implementation,
(
n
2

)
pairwise alignments must be computed (where

n represents the total number of reads to be assembled). Given that large genome assembly

projects routinely involve hundreds of millions of reads, an enormous number of pairwise

alignments need to be computed (an assembly of 1 billion reads would require 5∗1017 pairwise

alignments). In practice, heuristics are used to eliminate large numbers of alignments. The

most common heuristic involves checking each potential pair for a few short exact matches.

Pairs which share no exact matches are not subjected to the full pairwise alignment algorithm.

7
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Typically the pairwise alignments are used to construct an overlap graph where nodes

represent reads and edges connect reads that overlap. After the pairwise alignments are

calculated, and the overlap graph built, algorithms of this variety conceptually assign reads to

genomic locations in a layout step and then construct a consensus genome sequence (typically

a large set of contigs). Large assemblies performed using the OLC approach take days or

weeks to compute. A thorough review of the computational complexity of various models of

genome assembly is given in [20].

The de Bruijn graph approach is radically different [26]. In this formulation a read

is represented by all of its substrings having a user-specified length k. These substrings are

called k-mers and are organized into a de Bruijn graph. Each k-mer is represented as an

edge in the graph with the source node representing the prefix of the k-mer sequence having

length (k − 1) and the sink node representing the suffix of length (k − 1) [6]. This approach

obviates the need for pairwise sequence alignments because exact matches are used and the

overlaps between k-mers are inherently represented by the graph structure. A key insight is

that this formulation (in the case of single-molecule circular genomes) allows the assembly

problem to be framed as the problem of finding an Eulerian cycle as opposed to the much

more computationally expensive task of finding a Hamiltonian cycle (as in the OLC case)

[26]. This approach also has the advantage of representing repeats in a more natural way.

The differences between the OLC approach and the de Bruijn graph approach are graphically

depicted in Figure 2.1.

For both types of algorithms, heterozygous genomes present numerous challenges. For

example, consider a particular location L in the genome and let La represent the sequence at

that location on haplotype A and let Lb represent the sequence at that location on haplotype

B. In order to produce an accurate haploid genome either the sequence La or the sequence

Lb must be chosen. However, how is the assembler to know that La and Lb are not actually

paralogs (copies of a gene occupying different locations in the same genome)? The assembler

may believe La and Lb both need to be in the haploid genome thereby introducing error into

8
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Figure 2.1: Differences between the OLC and de Bruijn graph approaches to the genome
assembly problem. The image on the left-hand side is reused from [29] and shows how the
overlap graph differs from the de Bruijn graph. The image on the right-hand side is reused
from [26]. Section (a) of this image depicts part of a genome having a 3-copy repeat. It also
shows reads sampled from this part of the genome. Section (b) shows the overlap graph
built from the reads in section (a). Notice that the boundaries of each copy of the repeat are
impossible to represent in the graph structure itself because traversing an edge adds much
more than a single base. Sections (c) and (d) demonstrate that, because the de Bruijn graph
has single-base resolution, the precise sequence that constitutes the repeat can be directly
represented in the graph.

the final sequence. Now consider the case that the assembler realizes that La and Lb belong

at the same location but produces a contig which is a composite of the two sequences rather

than truly one variant or the other. In this case the assembler has produced contiguous

sequence that doesn’t actually occur on either haplotype! Furthermore, it is possible for a

particular sequence of nucleotides to occur in one location on haplotype A and occur in a

totally different location on haplotype B. Such sequence may assemble together into a single

contig but appear to have two different, and conflicting, locations in the genome.

To date, there are no general-purpose, reliable, algorithms for producing high quality

reference genome assemblies from reads that are sampled from 2 highly divergent haplotypes.

This is underscored by the extensive use of project-specific pipelines for producing diploid

assemblies. These approaches typically involve post-processing of a fragmented initial assembly.

These studies will be discussed in more detail in section 2.2.

9
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2.2 Project-specific algorithms for heterozygous genome assembly

To date, only a small number of highly heterozygous organisms have been assembled either

into a reference sequence or into a complete genome assembly (an assembly where each

homolog is represented by its own sequence). The inadequacy of algorithms for these tasks is

underscored by the use of project-specific algorithms in each case [14, 17, 32, 35]. Two major

approaches are used in these projects. The first approach is to allow for a greater degree

of polymorphism at any genomic location in the building of contigs thereby allowing most

polymorphic alleles to assemble together into single contigs, although these contigs are often

a composite of the two haplotypes. This approach is only useful for relatively low rates of

polymorphism and still requires manual curation to detect polymorphic loci that did not

assemble together successfully. The other approach, and more successful one, is to purposely

force the two divergent haplotypes to assemble separately as much as possible to produce a

highly fragmented, but generally haplotype-coherent assembly. The fragmented contigs are

then merged into a larger reference assembly by identifying pairs of sequences that appear

to be homologous with respect to each other. The quality and contiguity of heterozygous

genome assemblies, even when performed with significant manual intervention, is generally

much lower than that which can be obtained using monoploid or homozygous data.

2.3 Haplotype assembly algorithms

The Haplotype assembly problem (HAP) refers to the problem of inferring haplotypes from

a large set of DNA reads, when a reference genome for the organism is already available.

This problem has been thoroughly studied as an optimization problem with most variants

proved to be NP-hard [2, 19]. A polynomial time algorithm is known for the gapless case [2].

There is a rich set of innovative solutions for this problem that provide good performance in

practice. For example, Bansal et al. describe a Markov Chain Monte Carlo (MCMC) method

where the haplotype is represented as a point in very high dimensional space (a dimension

10
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for each single nucleotide polymorphism (SNP)) [3]. The objective function minimizes the

number of corrections that must be made to a set of reads to make them align perfectly

with the solution haplotypes. Finding the actual optimal solution is non-polynomial, but

MCMC allows sampling from the most probable regions of the haplotype space in polynomial

time, generally producing a good approximation. Another innovative approach maps HAP

to the familiar Max-2-SAT problem, thereby allowing the use of advanced SAT solvers for

the haplotype assembly problem [21]. In general, these approaches are insufficient for two

reasons. First, they typically target only SNPs and fail when a lot of insertion-deletion (indel)

polymorphism is present. Second, these methods require that a reference assembly already

be available.

2.4 Assembly algorithms for polymorphic species

There are relatively few genome assemblers which have been written specifically for the

purpose of assembling data sampled from a single polymorphic individual although the last

few years have seen a dramatic increase in polymorphic genome assembly research. One

notable example is the Hapsembler algorithm which was developed as the PhD thesis of

Nilgün Dönmez under well-known bioinformatics researcher Michael Brudno [7].

The Hapsembler algorithm [7, 8] is an OLC assembler which makes a unique contribu-

tion by formulating and constructing a mate pair graph. Conceptually, this structure is an

overlap graph, however, it is a unique kind of overlap graph. Traditional overlap graphs have

complete reads as their nodes and overlaps represented by edges. In Hapsembler’s mate pair

graph, the reads are not complete. From a long fragment it is possible to sequence 2 short

reads, one from one end and one from the other end. Such reads are called paired end reads.

Hapsembler’s mate pair graph treats each paired-end read as a single long read and builds

a structure analogous to a traditional overlap graph which shows the “overlaps” between

these long reads and uses them to handle polymorphism more accurately than many other

methods (as will be confirmed in the results section).

11
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In addition to algorithms built specifically to deal with polymorphic genomes many

general purpose assemblers such as Newbler (454 Life Sciences’ proprietary assembler) and

ALLPATHS [5] have features that are designed to improve their performance on heterozygous

genomes. Newbler has a -het option which modifies the algorithm to better handle polymor-

phic genomes and ALLPATHS represents assemblies in graph form allowing researchers to

more easily examine polymorphisms present in the input data.

12
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Chapter 3

The Bioluminescence Heterozygous Genome Assembler

Thesis statement: The Bioluminescence Heterozygous Genome Assembler, which

employs state-of-the-art machine learning techniques to aggressively discover haplotype-

specific sequences during assembly, will produce longer contigs and less haplotype-switch

errors than competing algorithms.

The Bioluminescence heterozygous genome assembler represents a very significant

advance in the area of genome assembly algorithms for polymorphic species. The algorithm

it uses is completely unique in the assembly literature and has the potential to allow for the

robust assembly of species that are not amenable to traditional genome assembly approaches.

To our knowledge, no other genome assembler uses state-of-the-art machine learning techniques

in order to identify haplotype-specific sequences as a major component of the genome assembly

pipeline. Bioluminescence uses this information to improve both contiguity and phasing of

polymorphic genome assemblies.

The Bioluminescence heterozygous genome assembler is a k-mer centric genome

assembler in the sense that the primary unit the assembler works on is the k-mer, not the

read. However, unlike traditional k-mer based genome assemblers, Bioluminescence is not

based on the de Bruijn graph model.

Instead, Bioluminescence attempts to solve the genome assembly problem in much

the same way that a game player might attempt to win a game. Bioluminescence makes a

series of discrete moves. Moves which have a higher probability of actually being part of the
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correct assembly are made preferentially and moves continue to be made until no more moves

meet the minimum threshold for quality.

Each “move” in the algorithm begins by selecting a k-mer. Care is taken to prefer-

entially select k-mers which are more likely to produce good assembly results, as we shall

discuss in more detail later. Each k-mer is the key into a hash table which can, at any time

in the assembler’s processing, fetch all of the intermediate sequences (reads or intermediate

contigs) containing the chosen k-mer. A multiple-alignment of the sequences containing the

k-mer is produced by using the position of the k-mer in the sequence as an “anchor” across

which to align each sequence (see Figure 3.1).

Figure 3.1: An example of how Bioluminescence builds a multiple alignment using a particular
k-mer as an anchor. Bioluminescence first finds the location of the k-mer in each sequence,
and the strand on which that k-mer is found. It then uses the knowledge about where the
k-mer is in each sequence to perform an ultra-fast alignment by “normalizing” each sequence’s
position in the alignment such that the k-mer begins at the same location for every sequence
in the alignment.

When such an alignment produces a consistent result, that is to say, an alignment

in which all of the sequences agree (error handling is future work), the sequences are joined

into a consensus sequence that itself can participate in later “moves” (also known as joins).

The key to the Bioluminescence approach is that it makes moves that are likely to phase
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haplotypes before it makes moves that might produce haplotype switch errors. By doing

this, long, phased haplotypes are produced early on in the process and are preserved in later

joins. As we will see in the validation chapter, this approach leads to better phasing in highly

polymorphic genome assemblies.

The critical thing to understand at this point is that the choice of which k-mer to use

for the anchor has dramatic effects on how the alignment should be treated when considering

whether or not to perform a join. For example, if the anchor k-mer is haplotype-specific,

meaning that it only occurs on one haplotype but not the other, then all of the reads in the

alignment must have come from that haplotype, since they all contain the k-mer. This means

that a join operation performed on such an alignment can never produce a haplotype switch

error. It is this fact that Bioluminescence leverages to produce improved assemblies.

In contrast, if the anchor k-mer is present exactly once on both haplotypes, and in the

same relative location on each, then a join operation performed on a consistent alignment

may produce a haplotype switch error. If the anchor k-mer is present in multiple locations,

of course, you then have the traditional repeat problem. Joins made on this class of k-mers

have the potential to erroneously connect parts of the genome that are actually far apart

from each other.

To gain deeper insight into how Bioluminescence works, it is important to understand

the traditional model for counting repeats in genomes and how the Bioluminescence variant

of this process is different. The traditional model for genome assembly has an implicit

assumption that homologous sequences in diploid genomes are similar enough that they

can be treated as if they are just a single molecule. For genomes which have very low

polymorphism this assumption is reasonable to make and simplifies the assembly logic. Under

this assumption a sequence is unique in the genome if it occurs on each haplotype exactly

once. A 2-copy repeat would be a sequence that was found twice on haplotype A and twice

and haplotype B and so on. There is also an implicit assumption that copies are in the same

relative location on each homolog. For example, in the case of a 2-copy repeat there is an
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implicit assumption that the 2 copies on haplotype A and the 2 copies on haplotype B are in

similar positions on the 2 molecules.

This has profound implications for how edges in a contig graph are interpreted.

Consider a very simple genome with a single 2-copy repeat that is much longer than any

read in the input data. Let us refer to the first copy of the repeat as R1 and the second

copy of the repeat as R2. Each copy of the repeat occurs in a different context. That is

to say, the sequence that immediately surrounds R1 is very likely to be different than the

sequence that immediately surrounds R2. In a traditional contig graph, this would most

likely be represented as a single contig C which represents the repeated sequence. The depth

of coverage of this contig would be likely to be roughly twice as much as for unique portions

of the genome.

The contig C would be represented as a node in the graph and would have edges

connecting it to both of the contexts (the sequences immediately surrounding the 2 copies

of the repeat). Notice that under the assumption that the haplotypes are near identical

the most likely interpretation of a bifurcation in the contig graph is that there is a 2 copy

repeat. The assembler would be likely to search for a layout that is consistent with the edges

which places that sequence in the genome twice. This is exactly the wrong thing to do if the

bifurcation is actually caused by variation between haplotypes!

Variation between the 2 haplotypes causes a very similar graph pattern. Imagine 2

highly heterozygous haplotypes and consider a sequence that is present on both of them, and

in the same location on both of them, but where the contexts are different in the 2 haplotypes.

This would produce a graph structure very similar to the structure described in the previous

paragraph but the coverage statistics would be markedly different. In this case, the analog of

the 2-copy repeat is simply a sequence present on both haplotypes and it would be expected

to be at a coverage typical for a sequence that is present just once on each haplotype. In

contrast, the surrounding contexts, which are specific to each haplotype, would be expected

to be at half the coverage of a single copy sequence present on both haplotypes. Strictly
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graph-based approaches are likely to ignore clues in the coverage, and other clues, that might

help the assembler understand that the bifurcation is caused by haplotype variation and not

by a traditional 2-copy repeat. Bioluminescence aggressively identifies haplotype-specific

sequences using a combination of coverage and contig graph patterns and is therefore able to

understand which sequences are haplotype-specific to a much greater degree than traditional

genome assembly algorithms. Figure 3.2 explains how copy-counting of sequences must be

done very differently when haplotypes are highly heterozygous.

Figure 3.2: When a genome assembler assumes that homologous chromosomes are sufficiently
similar that they can be treated as a single molecule it is likely to make mistakes when
presented with highly heterozygous data. Counting how many times a sequence occurs in the
genome is a much different task when the assembler assumes that the haplotypes have a high
degree of variation from each other.
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Bioluminescence identifies haplotype-specific markers in the assembly by using state-

of-the-art machine learning classification techniques. First, it builds a feature table that

contains a combination of coverage statistics and contig graph patterns. The contig graph

patterns are drawn from a special kind of assembly performed using the Newbler software.

In this step, Bioluminescence performs an ultra-stringent assembly of the data and explicitly

instructs Newbler that there is no heterozygosity in the data. This forces Newbler to break

contigs whenever there is significant variation.

The goal of this assembly is not to actually assemble the genome, rather the goal is

to produce a contig graph which Bioluminescence can examine in order to learn from the

structure of the graph. In this scenario it is desirable that the assembler break contigs at

every significant point of variation and that contigs remain largely haplotype-coherent. This

is why the assembler is parameterized as if no heterozygosity is present even though we expect

heterozygosity.

Each row in the feature table reports information about a single k-mer. However,

much of the data also requires knowing about the contig in which the k-mer is found in

the ultra-stringent Newbler assembly. In order to allow this the Bioluminescence assembler

contains a hash table which allows the software to quickly find the contig in which a particular

k-mer is found in the Newbler assembly. The columns in the feature table are as follows.

1. The k-mer coverage.

2. The coverage of the contig in which the k-mer is found.

3. The length of the contig in which the k-mer is found.

4. Whether or not the contig in which the k-mer is found is one of the halves of a perfect

bubble contig graph structure.

5. Whether or not the contig in which the k-mer is found is the haplotype-specific part of

a direct indel contig graph structure.
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6. Whether or not the contig in which the k-mer is found meets the bifurcating neighbor

criterion.

Items 4-6 refer to specific contig graph patterns which have precisely defined semantics.

The meaning of these structures will be discussed further in the next section. The goal of this

section has been to introduce the reader to some of the core ideas in the algorithm not to

provide implementation-level details. The next section will provide a more detailed discussion

of the algorithm.

3.1 Detailed description of the algorithm

In this section we give a detailed description of the algorithm. The description of the algorithm

given here attempts to be given in execution order, that is to say it attempts to present the

algorithm in the order in which things occur when the program is executing. There may be

slight deviations from this goal.

The algorithm begins by loading the unpaired reads into memory. Each read is then

translated into a data structure which represents an intermediate contig. You can think of this

data structure as the main substrate on which alignments, and subsequent join operations,

occur. Each intermediate contig consists of the consensus DNA sequence for the contig and

the alignment depth that has currently been observed at each position (as the algorithm

progresses and intermediate contigs are joined together into longer contigs the alignment

depth is updated).

The next step is to build an object which summarizes information about all of the

k-mers in the unpaired read set. This structure consists of a hash table where a key is

a particular k-mer and the value is an object summarizing information about that k-mer,

specifically, how many times that k-mer was found in the unpaired reads and which k-mers

are neighbors to the key k-mer in the sense that they are found together in one or more reads.

This data structure also keeps track of how many reads the k-mers were found in together.
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We then build a hash table designed to provide quick lookup from a particular k-mer

to all of the intermediate contigs which contain that k-mer. As we will see shortly, this

data structure is critical to the main assembly engine because for any particular k-mer the

assembler needs to be able to find the set of intermediate contigs which contain that k-mer

in constant time.

The next step is to train the classifier that will be used for determining whether a

particular k-mer is haplotype-specific or not. For the purposes of this study the k-mer length

is set to 31 and this k-mer length is used consistently for all k-mer-based genome assemblers

in the study so that no assembler has an advantage over another.

As mentioned previously, the feature table used for classification incorporates both

coverage statistics and contig graph patterns. In order to produce the feature table we need

a contig graph we can learn from. This is produced in the following manner. First, we need

a sequence to serve as haplotype A. Pretty much any real sequence will do, but preferably

one that is relatively long so that it will provide many cases to learn from. A haplotype

B sequence is then produced from haplotype A by randomly inserting SNPs into it. The

current algorithm does this until it produces a haplotype B sequence that has, on average, 2

SNPs per 100 bases when compared to haplotype A.

Unpaired reads are then drawn randomly from the diploid genome to produce 40x

coverage of each haplotype. These reads are then passed to a Newbler assembly that is

specifically parameterized to require 100 percent overlaps and to expect that there is only 1

haplotype in the assembly. This forces the resultant contig graph to be quite fragmented

under conditions of high heterozygosity. This is exactly what we want. Wherever boundaries

between homozygous sequence and heterozygous sequence exist we want to force a bifurcation

in the graph. We can then use these patterns, along with statistics about the depth of

coverage of the contigs to learn about the k-mers.

Bioluminescence contains a data type that is capable of reading and understanding

the Newbler contig graph and of searching it for particular patterns. This data type is used
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to read in the Newbler contig graph and find 3 different types of patterns (1) the perfect

bubble pattern (2) the indel pattern (3) the bifurcating neighbor pattern.

Consider a 100 base pair sequence on haplotype A and a different 100 base pair

sequence, in the same location, on haplotype B. Consider also that the sequence flanking both

of these differing sequences is the same. The tendency of the contig graph in this scenario

would be to represent the 2 different sequences each in their own contig. We’ll call the

heterozygous sequence from haplotype A hA and the heterozygous sequence from haplotype

B hB. Immediately flanking each of these sequences on the 3’ end is a shared sequence we

will call H3. On the 5’ end is a shared sequence we will call H5. Notice that H3 and H5

are both going to need 2 edges, one to hA and one to hB. Any k-mers occurring in contig

hA or contig hB would be given the value true for having the perfect bubble pattern if no

other edges, in addition to the ones just described, connect to hA or hB. The intuition here is

that because contigs hA and hB are very likely to be haplotype-specific we want the classifier

to treat k-mers in these contigs differently than k-mers in contigs that are not likely to be

haplotype-specific.

Now consider the same scenario, only this time instead of having hB be a sequence of

about the same length as hA let’s assume that hB has simply been deleted from the genome.

In this scenario both H3 and H5 have an edge to hA but they also have an edge to each other.

This creates a structure that looks kind of like a triangle and is what we mean by the “indel”

pattern. In this case the contig hA is likely to be haplotype specific and k-mers in this contig

are marked true for having the indel pattern.

The final pattern is called bifurcating neighbor. A k-mer is said to have this property

when the contig in which it is found in the Newbler assembly has the following properties.

1. Both ends of the contig (5’ and 3’) are adjacent to no more than 2 contig ends in the

contig graph.

2. At least one of the 4 possible contig ends neighboring the contig participates in exactly

2 edges.
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3. The contig is not either side of a perfect bubble structure.

4. The contig is not the haplotype-specific part of an indel structure.

Contigs meeting these criteria are more likely to be haplotype specific because this

pattern can be produced when there is a boundary between sequence that is homozygous

and sequence that is heterozygous. This occurs because the homozygous contig needs exactly

2 edges, one to the heterozygous sequence it is next to in haplotype A and one to the

heterozygous sequence it is next to in haplotype B.

Bioluminescence then constructs a feature table for training. Each row in the feature

table is a k-mer which was found in exactly one Newbler contig and which was also found

in the reads sampled from the training diploid (these k-mers meet the minimum criteria

necessary to produce values for each column in the table). For each such k-mer the following

attributes are obtained.

1. The k-mer coverage in the input set of reads.

2. The coverage of the contig in which the k-mer is found.

3. The length of the contig in which the k-mer is found.

4. Whether or not the contig in which the k-mer is found is one of the sides of a perfect

bubble contig graph structure.

5. Whether or not the contig in which the k-mer is found is the haplotype-specific part of

an indel contig graph structure.

6. Whether or not the contig in which the k-mer is found meets the bifurcating neighbor

criterion.

We are almost ready to train the model now. Bioluminescence contains a data structure

which represents a diploid reference genome and its 31-mer spectrum on each haplotype.

Using this structure Bioluminescence can know whether a k-mer is actually haplotype specific

in the training genome or not. With all of the aforementioned features, and the class now
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known, Bioluminescence uses the Weka [9] machine learning package to train a Random Forest

classifier. The Random Forest classifier is used based on excellent classification accuracies in

10x cross validation within the training set (greater than 99% accuracy) and the results of an

early unpublished pilot study related to this work.

We are now ready to classify the k-mers of the input data as either haplotype-specific or

not haplotype-specific. In order to use the classifier, Bioluminescence follows steps analogous

to what has just been described in order to produce a feature table with k-mers ready to be

classified. Each one is then classified using the Random Forest classifier.

Now the assembly engine is ready to run. The assembly engine tries hard to assemble

haplotype-specific sequence before it assembles other parts of the genome. The intuition

behind this is that if these haplotype-specific sequences are built into long haplotypes first

they will be preserved in later joins and produce a final assembly with less haplotype-switch

errors than the competitors. As the validation section will prove, this is exactly what happens

and the reason why Bioluminescence produces contigs that are more highly phased than the

competing algorithms in this study.

At a high level this part of the assembly consists of selecting a k-mer to act as a pivot

point, fetching all of the intermediate contigs that contain that k-mer, and then making a

decision with regard to whether or not a set of intermediate contigs should be combined

into a longer contig. Anchor k-mers which are likely to be haplotype-specific are chosen

first. This is because any reads that contain such a k-mer must have been drawn from the

haplotype that contains that k-mer, so joining them into a contig is a safe operation that

will not produce haplotype switch errors.

Bioluminescence will order k-mers in such a way that k-mers that are more likely

to be haplotype specific are considered as anchors before k-mers that are less likely to be

haplotype-specific. More specifically, the k-mers are examined in the order of a priority queue.

The priority queue is ordered as follows. First, k-mers are ordered according to the number

of times they were observed in the input set of reads, with k-mers observed less often coming
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first. The intuition is that k-mers at lower coverage are more likely to be haplotype-specific

than k-mers at higher coverage. K-mer coverage is an integer value. It is just a count of how

many times the k-mer occurred in the input set of reads. Because of this there are a very

large number of ties. K-mers that occur at the same coverage are ordered in such a way

that you always use k-mers (as anchors) that are classified as haplotype-specific before you

consider those that are not classified as haplotype-specific. Bioluminescence continues this

process of examining anchors and then either joining or not joining, based on whether the

alignment is consistent, until its stopping criterion is met, after which it prints out the final

collection of contigs.

Algorithm 1 Bioluminescence heterozygous genome assembler

1: Load the unpaired input reads into memory.
2: Transform each read into an intermediate contig data structure. Objects of this type will

be used to construct alignments.
3: Build an object which summarizes properties of interest about the k-mer collection.
4: Build a hash table where a key is a particular k-mer in the assembly and the value is the

set of intermediate contigs which contain that k-mer.
5: Build a machine learning model for classifying k-mers as haplotype specific.
6: Classify all of the k-mers in the assembly that have the requisite data for classification
7: Build a priority queue of k-mers where the least frequent k-mers are served first. Within

a particular k-mer frequency serve all k-mers that are classified as haplotype-specific
before serving the other k-mers at that frequency.

8: for all k-mers in queue (until stopping criterion met) do
9: Produce a k-mer anchored alignment
10: if the alignment is consistent then
11: produce a longer contig from the component contigs and update the kmer-to-contig

map
12: else
13: continue to the next k-mer
14: end if
15: end for
16: Print final set of contigs.

Enhancing the core assembly algorithm to handle errors, building the paired-end

module, and adding all of the other features that are still necessary to make Bioluminescence

a general-purpose genome assembler is left for later work. At this stage in the algorithm’s

development it is intended as a vehicle to either prove or disprove the thesis statement. As we

24



www.manaraa.com

will see in the validation section the thesis statement is dramatically validated. A simplified

overview of the entire process is given in Listing 1.
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Chapter 4

Validation of the Thesis Statement

This chapter presents the study that was conducted to validate the thesis statement.

It has been written in a style suitable for independent publication. It is our opinion that this

validation work contains the most powerful analysis yet published with regard to how genome

assembly quality changes as a function of the SNP rate of the organism under study. In this

work we perform a tightly controlled experiment in which changes in assembly quality can

be directly attributed to changes in the SNP rate. We conclusively demonstrate that every

assembler tested, except for Bioluminescence, exhibits severe reduction in genome assembly

quality under high-SNP conditions even for the simplest known genomes.

The purpose of this research is to quantify the assembly quality achieved by a number

of genome assembly algorithms when they are presented with the problem of assembling reads

that have been sampled from a heterozygous diploid organism. It is well understood that such

data are much harder to assemble than homozygous data [12, 14, 27, 30, 32, 35]. The papers

cited here describe, among other things, many whole-genome reference assembly projects

where the targeted organism exhibited a high degree of heterozygosity. The common theme in

all of these projects is that the assembly of heterozygous data is particularly challenging. In

many of these projects large and well-funded research teams had to resort to writing custom

algorithms just to assemble their data and it remains unknown exactly how accurate these

final assemblies are or how much better the contiguity of such assemblies could have been had

the heterozygosity not been present. These studies suggest that it is important to understand
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more about why heterozygous genome assemblies are often fragmented and inaccurate and to

understand whether it is possible to improve algorithms for this type of data.

Despite the fact that it is well known that heterozygous diploid genomes are very

challenging to assemble, often producing highly fragmented and/or error prone results, it is

not yet well understood what specific strengths and weaknesses are exhibited by the popular

genome assembly algorithms under these conditions. This lack of deep understanding about

how SNP (single nucleotide polymorphism) rate, and other forms of heterozygosity, affect

assembly quality can lead to a somewhat haphazard genome assembly approach which consists

of assembling the data with an arbitrary selection of genome assemblers and selecting the

assembly which produces the longest contigs. Such a strategy can lead to reference assemblies

that are inaccurate, containing numerous haplotype-switch errors.

This work aims to achieve 2 goals. First, we aim to produce the most thorough

analysis to date of how SNP rate affects genome assembly quality. Second, we wish to

discover whether or not there is room for algorithmic improvement in this area by testing

an approach, that is introduced with this work, which attempts to produce high quality

reference assemblies even in the presence of highly heterozygous input data. We will reference

these aims regularly throughout the manuscript, particularly in the section where we describe

our experimental design decisions. When clarity calls for it, we may briefly repeat these

aims in the body of the document, but for brevity we will sometimes refer to them sim-

ply as aim 1 and aim 2. These aims are highlighted and stated in a bit more detail in Table 4.1.

4.1 High-level overview of the experiment

In this section we present a very high-level overview of the entire experiment. Our goal in

doing this is to provide at the very beginning of the manuscript a clear enough description

of the entire experiment that the rest of the manuscript can be readily understood. In this

section we will focus almost exclusively on a matter-of-fact description of what experiment
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Aims of the experiment

1. To provide the most complete analysis to date, for the genome assemblers tested, of
how genome assembly quality is affected by SNP rate when heterozygous diploid genomes
are assembled by the whole-genome shotgun technique

2. To determine whether or not a new algorithm, the Bioluminescence haplotype-aware
genome assembler, is capable of producing quantitatively improved genome assemblies in
comparison to competing algorithms under the conditions of this study

Table 4.1: The aims of the experiment

was conducted and we will skip almost entirely a discussion about why we chose to design

the experiment in this way. Immediately following this high-level overview of the experiment

we will devote an entire section to a discussion of the design decisions.

The description of the experiment that is given in this section is not intended to be

sufficiently detailed that it would allow full reproducibility of the experiment. For that level

of detail the reader is referred to the Materials and Methods section.

In this experiment 60 diploid genomes, varying from each other only in SNP rate, are

assembled. Each of these 60 genomes is assembled once by each of the tested algorithms,

Bioluminescence, Hapsembler, Newbler, and Velvet, providing a total of 240 genome assemblies

for analysis.

Each diploid genome consists of two molecules, a haplotype A molecule and a haplotype

B molecule. Every one of the 60 diploid genomes shares the same haplotype A sequence, the

NCBI reference sequence NC 021894.1, which is an extremely compact whole genome [23]

that should be relatively easy for most assemblers to assemble with very high accuracy and

very high contiguity from an input data set that does not also contain reads from a second,

highly-related, molecule.

Sixty haplotype B sequences are used in the study, each one paired with the same

haplotype A sequence to produce the 60 diploid sequences discussed in the previous paragraph.

Each haplotype B sequence is the same length as haplotype A but is allowed to differ from
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haplotype A by some number of single nucleotide polymorphisms while disallowing indel and

rearrangement polymorphisms.

Each diploid genome can be uniquely identified within the set of 60 genomes by the

percentage of positions at which the haplotype B sequence of that diploid genome differs from

the haplotype A sequence. To be precise the 60 diploid genomes correspond in a one-to-one

fashion to the SNP percentages in the set {0.0%, 0.1%, 0.2%, 0.3%, ..., 5.9%}.

Each genome assembler (Bioluminescence, Hapsembler, Newbler, and Velvet) is given

the exact same set of reads from which to try to assemble any particular genome. No errors

are inserted into the reads and the data set includes both unpaired and paired-end reads.

Each assembler is given 80x coverage of the genome (40x of each haplotype) in unpaired reads,

each having a length of 150 base pairs. Each assembler also has access to two paired-end

data sets. For both paired-end data sets the read length of each end is 50 base pairs. The

first library has a mean insert size of 800 base pairs and a standard deviation of 80 base pairs.

The second library has a mean insert size of 3000 base pairs and a standard deviation of 300

base pairs.

It should be clear at this point that the experimental design attempts to isolate 2

explanatory variables, the SNP rate and the genome assembly algorithm, from as many other

variables as possible that also affect genome assembly quality such as repeat rate, input data

set quality, rearrangement polymorphism etc.

At the highest conceptual level the study is interested in how these 2 explanatory

variables affect a single response variable, the genome assembly quality. The tight control of

other variables enables us to answer, with perhaps higher clarity than any previous study,

questions such as “How does the SNP rate affect the genome assembly quality produced by

algorithm X?”, “Does algorithm X consistently produce better results under high SNP-rate

conditions than algorithm Y ?” and “Does algorithm X perform well under certain SNP rates

but poorly under other SNP rates?”
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In this study we will focus on 4 concrete response variables, each of which tells us

something about genome assembly quality. These response variables are enumerated and

highlighted in Table 4.2.

Response Variables

1. Contig N50

2. Max contig length

3. Total number of assembled bases

4. Percentage of the possible haplotype switch errors actually made

Table 4.2: The response variables analyzed in this study. Each variable is analyzed as a
response to changes in the SNP percentage and the algorithm used for assembly.

4.2 Discussion of the experimental design

In this section we discuss in detail the design decisions we made. We discuss at some length

the pros and cons of these decisions and provide the reasoning that was used to conclude that

the design decisions are sound. This section is organized around specific design decisions.

4.2.1 The decision to use controlled genomes

The primary object of study in our experiment is how different genome assembly algorithms

are affected by changes in the SNP rate (see Table 4.1). Once having settled on this object

of study it would have been possible to attack the problem by first assembling a collection of

real genomes that display a wide range of heterozygosity rates and to attempt to perform an

assembly of each of these genomes with each of the tested genome assemblers.

Although such a study would be interesting, we believe it is clearly not the right choice

for our aims. In this particular experiment we are attempting to attribute, with very high

probability, any changes in our response variables to changes in our explanatory variables,

SNP rate and algorithm. Most real genomes are incredibly complex and differ from each other

across an enormous range of variables. For example, had we chosen to compile a collection of
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previously-studied diploid genomes as the substrates for our study we would have had the

following variables, each of which would have differed between each member of the collection.

1. Genome size

2. Genome complexity, as measured by a number of different variables such as repeat rate,

extent of polymorphism, types of polymorphism etc.

3. The quality of the input data set, as measured by a number of different variables such

as the quantity of reads obtained, the length of the reads obtained, the number of

paired-end reads, the error rate in the reads, etc.

Some of these issues could have been mitigated to some extent, but not fully. For

example, we could have decided that we would use previously-assembled heterozygous genomes

as the substrates for our study and we could have attempted to normalize the quality of the

input data sets by computationally producing comparable input data sets from each of these

assemblies. Of course, in doing so, we introduce a new variable which is now the quality of

the reads are dependent to some extent on the quality of those original assemblies.

Another major disadvantage to the approach described above is that there would be

uncertainty in every measure. There would be some uncertainty as to the exact genome

size, the exact SNP rate, the number of repeats, the types of repeats, the prevalence of

indel/rearrangement polymorphism and more. In short, we believe that such a design would

considerably reduce our ability to achieve the aims of the study.

4.2.2 The decision not to introduce errors into the reads

The decision to employ a design that uses tightly controlled, computationally-produced

diploid genomes, necessitates the decision of using a computational process for sampling the

reads from each genome. We decided the decision of not introducing errors into these reads

was an appropriate design decision for this particular study for the following reasons. First,

aim 2 involves testing, for the very first time, a new algorithm that is still under development.
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It has been considered far more important to develop the primary concepts of the genome

assembler than to focus on building yet another error-correction algorithm.

Of course, we could incorporate another group’s error-correction algorithm as part of

our genome assembly process, but doing so was not considered a high priority for the early

stages of the algorithm’s development.

A second possible advantage of the decision not to introduce errors into the reads

is that doing so would add an additional variable that affects genome assembly quality. In

other words, differences in assembly quality could be due in part to the relative effectiveness

of the different algorithms at correcting the types of errors we introduced into the reads.

For these reasons we believe it is a sound design decision in this particular study to

use error-free reads. With that said, a follow-up study will certainly have to be done that

tests the ability of the Bioluminescence haplotype-aware assembler to correct sequencing

errors as part of its pipeline.

4.2.3 The decision to use the 0.0% to 5.9% range

It was important to us to try and cover the entire range of published heterozygosity rates,

and perhaps even a little higher, in order to cover almost all of the rates that will be found in

real organisms. To our knowledge the Ciona savignyi assembly still has the highest reported

heterozygosity rate of 4.6% [32]. We wanted to make sure the range went at least this high

and decided to increase the top of the range to 5.9% since some organisms will certainly

exhibit a higher rate than Ciona savignyi.

We also decided it was important to cover this range uniformly, something that the

overall study design allows. For this reason we decided that our 60 genomes should map in a

one-to-one way to the set {0.0%, 0.1%, 0.2%, 0.3%, ..., 5.9%}. Having a uniform distribution

over this range simplifies the task of talking about changes in a response variable that occur

over a particular range of the explanatory variable because the same number of examples of

the explanatory variable come from any 2 equidistant ranges of that variable.
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4.2.4 The decision to focus on SNP-level polymorphism

Aim 1 of the study explicitly names the SNP rate as the explanatory variable in this study

and not some other more general measure of heterozygosity. This language is intended to

emphasize to the reader that this experiment explicitly excludes the analysis of how other

forms of heterozygosity such as haplotype-specific rearrangements or differences in repeat

content across the haplotypes affect assembly quality. These are equally important questions

but are reserved for other studies because we aim to isolate our variable of interest from as

many confounding variables as possible.

4.2.5 The decision to use NC 021894.1

It was important to us to use a real genome sequence, but we wanted that genome to be

small for 2 reasons. First, since we are studying the affect of SNP rate, it is desirable

to use a genome that doesn’t have a large amount of repeats which would fragment the

assembly regardless of SNP rate. In other words, it would be ideal if a genome assembler

were capable of producing a near perfect assembly of the homozygous data so that we could

clearly determine that any weaknesses in subsequent assemblies were directly attributable

to the SNP rate. Secondly, we are testing a new algorithm and it was considered desirable

to run it first on small genomes where the causes of any weakness in its approach could be

more readily understood. These factors support the design decision to use the genome of

Carsonella ruddii to play the role of haplotype A in each of the constructed diploid genomes.

Because the algorithm is under active development, even today, it was also necessary

to have a large set of diploid genomes available for testing the algorithm as it progressed.

Under the original design we had intended to do all algorithm testing on NC 021894.1 and

use the related genome published in Science [24] as the substrate for the actual experiment.

Due to time constraints this design decision had to be modified in favor of using NC 021894.1.

This is mentioned because it is a potential source of bias, however, we believe that this

decision is highly unlikely to have any appreciable effect on the conclusions of the study.
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4.3 Benefits of the experiment

This study should give the clearest view to date into how different genome assemblers handle

SNP-level variation in the underlying reads. Each assembler will have high-coverage, high-

quality data from which to assemble and a small simple genome to reconstruct. By comparing

the assemblies at low heterozygosity rates with the ones at high heterozygosity rates we

should gain valuable insight into how each assembler handles such conditions and should be

able to make more intelligent decisions about which assembler to use when presented with

such data. We should also be able to draw conclusions about whether some of the techniques

employed by the Bioluminescence haplotype-aware assembler provide quantitatively improved

results in this scenario and whether these ideas are worth pursuing further.

4.4 Materials and methods

We begin this section with a brief discussion of the methods used by each of the genome

assemblers tested. Bioluminescence is excluded from this section because it is described in

detail in Chapter 3. This information will be of interest to most readers and will help place

the results in their proper context. The second major subsection of this section provides

the complete description of how the experiment was performed. There we provide a level of

detail that allows for the experiment to be reproduced. We also give the precise definitions of

each of the metrics we use in the results section.

4.5 The algorithms used for assembly

In this section we provide a brief overview of each of the algorithms tested. We will not provide

an exhaustive explanation of each algorithm. Interested readers can find that information

in the cited literature. The purpose of the explanations given here is to provide the reader

with enough of an understanding of each of the algorithms to put the results of this study in

their proper context. The algorithms are presented in the order they were released. This is
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the most convenient ordering to use because genome assembly methods often build on one

another.

4.5.1 Newbler

Newbler is a commercial genome assembler developed by 454 Life Sciences primarily for

the purpose of assembling data produced from their flagship sequencing machine The GS

FLX+ System. Due to its proprietary nature its precise algorithm is unknown to the

academic community at large although it is generally classified as being from the family of

overlap-layout-consensus algorithms [18].

The algorithms placed in this category typically begin by building a traditional overlap

graph or a highly-related data structure. In a traditional overlap graph each read becomes a

node in the graph. When the sequences of 2 reads overlap with one another above a certain

threshold an edge is placed in the graph to represent this overlap (See Figure 2.1).

Overlap graphs, and their relatives, are well represented in the genome assembly

literature and have been used primarily for longer-read, lower-coverage, genome assemblies.

The primary competitor to this class of algorithms is a class of algorithms based on de Bruijn

graphs which we will discuss in more detail later.

One of the advantages of overlap-based assembly algorithms is that they can be easily

used to express overlaps of varying length and quality. For example, R1 may overlap with

R2 by 40 base pairs, and have 1 mismatch in the overlap, while R3 overlaps with R2 by 300

base pairs and has no mismatches in the alignment. These overlap differences can be easily

represented in an overlap graph and can be used to give certain overlaps greater weight. As

we will soon see, algorithms based on de Bruijn graphs represent the reads in a fundamentally

different way.

Newbler performed very well in the Assemblathon 2 genome assembly competition

where it exhibited “the highest levels of coverage and validity, and lowest values for multiplicity

and parsimony among all competitive bird assemblies” [4].
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4.5.2 Velvet

Velvet’s genome assembly algorithm uses the classical de Bruijn graph approach that was

pioneered by Pavel Pevzner. In this approach the reads are not directly represented in the

graph. Instead they are broken into equal length fragments, known as k-mers and a graph is

constructed using overlaps that all have length k − 1.

This approach has several advantages. First, it scales better than the overlap-graph

approach. In an overlap-graph you have to add a node for every read that you add to the

assembly. This means that the graph size grows linearly with the number of reads, which in

high coverage assemblies can be enormous.

In contrast, in the absence of errors, the de Bruijn graph has a hard limit on the

number of nodes it will contain. Because there is a finite number of k-mers that actually exist

in the genome there is also a finite number of nodes in the de Bruijn graph of any particular

genome in the absence of read errors (which add erroneous k-mers to the graph). This issue

of errors can of course be mitigated by removing low coverage k-mers that are likely to be

errors.

Another advantage of the de Bruijn graph approach is that as you move from node

to node across an edge you are moving at 1-base resolution. This is a nice property and

simplifies the representation of repeats in assembly graphs.

The Velvet assembler has become a quite highly cited algorithm. As of September 17,

2014, Velvet [34] has been cited 2,974 times according to Google Scholar.

4.5.3 Hapsembler

Hapsembler [8] is an algorithm that was specifically designed to assemble highly polymorphic

genomes. It was one of the very first assemblers to specifically tackle the problem of

maintaining phase when 2 highly heterozygous haplotypes are being assembled together.

It is based on overlap-graph concepts, like Newbler, but it augments the traditional

overlap graph by also constructing a mate pair graph. This mate pair graph is a pseudo-
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overlap-graph which treats paired reads as if they were long single reads. Hapsembler uses

this mate pair graph to exclude certain paths that would be available in the traditional

overlap graph thereby excluding some paths that would cause haplotype-switch errors. This

makes Hapsembler a particularly interesting algorithm for this study because it specifically

targets the assembly of highly polymorphic input data, as does Bioluminescence.

4.6 The experiment

In this section we will describe in detail the experiment we conducted in order to validate

the thesis statement. The experiment is a significant contribution in its own right. To our

knowledge, it is the first experiment of its kind. Specifically it is the first published controlled

experiment which increments SNP rates across a wide range of values and measures how

genome assembly quality changes in response.

4.6.1 Constructing 60 genomes for assembly

We produced 60 diploid genomes to use for assembly, each consisting of a haplotype A

sequence and a haplotype B sequence. Each diploid genome had the exact same haplotype

A which was the NCBI (National Center for Biotechnology Information) reference sequence

having accession number and version NC 021894.1.

For each of the 60 diploid genomes a unique haplotype B sequence was computationally

produced by inserting single nucleotide polymorphisms into the haplotype A sequence. This

was performed using custom software in the Bioluminescence library of bioinformatics tools.

The algorithm works as follows. First the user selects the desired SNP probability in the

final diploid sequence. The algorithm then calculates the smallest number of SNPs that need

to be inserted to produce a SNP probability that is greater than or equal to the desired

probability. The SNPs are inserted as follows. First a random single-nucleotide location in

the genome is selected for mutation. If the position has already been previously selected and

mutated the algorithm randomly selects a new location. Once a position has been found
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that was not previously mutated either a transition event or a transversion event will occur.

Because transition events are known to be much more probable than transversion events,

the algorithm uses transitions 90% of the time. The algorithm limits itself to using the 4

canonical nucleotides A, C, G, and T. In other words, it doesn’t insert ambiguous or unknown

bases. In the case of a transversion the algorithm selects the 2 candidate bases at equal rates.

Using this technique, each of the 60 genomes for assembly was given a unique percentage

of positions that contained SNPs. The set of SNP percentages is {0.0%, 0.1%, 0.2%, 0.3%, ..., 5.9%}

4.6.2 Constructing the reads for assembly

From each of the 60 diploid genomes a set of reads to be used for assembly was constructed.

Each complete read set consisted of 3 important subsets of reads. The entire set of reads

used for each assembly is summarized in Table 4.3.

Paired Coverage Errors Mean insert length Std. deviation

no 80x (40x of each haplotype) 0 N/A N/A

yes 4x (2x of each haplotype) 0 800 80

yes 4x (2x of each haplotype) 0 3000 300

Table 4.3: For each diploid genome a collection of reads to be used for assembly was produced.
This table summarizes the reads produced for each genome. Each assembler used the exact
same set of reads for assembly.

The reads were produced using version 0.9.5 of the MetaSim software [28]. The

MetaSim software allows you to construct meta-genomes (collections of genomes) and to

sample reads from them. In our case each meta-genome consists of 2 sub-genomes (the

haplotypes).

4.6.3 Assembly parameters

In this section we report on the software versions and parameters that were used for assembly.

The Newbler assemblies were performed using version 2.8 of the software. Newbler was
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passed the -het option to ensure that the variant of the algorithm intended for heterozygous

genomes was run. Paired-end reads were explicitly marked as paired-end reads so Newbler

would not have to try and determine this on its own. Finally, Newbler was instructed to only

print out contigs having length 151 base pairs or greater. This number was chosen because

it is one base longer than the read length and was used with every assembler in order to

provide a fair comparison.

Version 1.2.10 of the velvet software was used. Velvet was run with k-mer length

31. All k-mer based assemblies were run using the same length in order to ensure that no

k-mer based method had an advantage simply because of the chosen k-mer length. The

velveth command marked the paired-end reads, which had a mean insert size of 800, with

-shortPaired. The other paired-end library was marked with -shortPaired2. The unpaired

reads were marked with -long and all reads were marked with -fasta. The velvetg

command used -cov cutoff auto and -read trkg yes. The velvetg command was also

told the correct insert size and standard deviations for each paired end library and used the

-scaffolding yes option.

Version 2.21 of the Hapsembler software was used. The Hapsembler assemblies were

run using the hapsemble command. The reads were marked as having come from the Illumina

platform. The genome size was estimated to be 160,000 base pairs. Because Hapsembler

requires fastq reads, high quality values were given to all bases (Phred score = 40).

As already mentioned Bioluminescence was run using a k-mer size of 31. Finally,

when a response variable could only be computed from an alignment these alignments were

generated using version 3.23 of the MUMmer software [15]. The nucmer command was

parameterized with -maxmatch and set the minimum length of a cluster of matches to 100.

4.7 Results and discussion

We will begin our examination of the results by looking at the effect of SNP rate, and

algorithm choice, on the most ubiquitous assembly quality statistic, the contig N50. Although
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Figure 4.1: The contig N50 statistic calculated for each assembly performed in the study.
Each point in the graph represents the N50 statistic calculated from a particular assembly.

the definition of the contig N50 statistic will be familiar to most readers, we repeat it here

because there are a few minor variations on the precise mathematical meaning of the N50

statistic. The definition we use in this work is as follows. Given a set of contigs C the contig

N50 for C is the longest contig in the set for which at least half of the total number of bases

in the set are in contigs of that length or greater.

The N50 results are presented in Figure 4.1. The most striking characteristic of the

N50 results is the degree to which contiguity degrades as the SNP rate increases. To get a bit

of perspective on just how dramatic the decrease is in contig N50 consider the following. The

contig N50 for the Newbler assembly on the 0.0% SNP rate genome is 53 times larger than
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Figure 4.2: The max contig length statistic calculated for each assembly performed in the
study. Each point in the graph represents the max contig length calculated from a particular
assembly

the N50 Newbler achieves when the heterozygosity rate is 1.5%. This is a staggering result.

Keep in mind that the heterozygosity presented in this paper is of the simplest possible

variety. We have constrained it to SNP only variation and the genome being assembled is

among the smallest and simplest to assemble in the world. This rate of degradation highlights

a marked failure to assemble heterozygous genomes with any degree of quality. The numbers

for Hapsembler and Velvet are similar in nature. Both algorithms show marked degradation

in the contig N50.
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The characteristics of the Bioluminescence algorithm are clearly unique among the set

of tested algorithms. As the SNP rate increases, the Bioluminescence N50 does not degrade

at all. In fact, it gets a bit larger, but it is consistently high across the vast majority of

genomes. The total length of each genome is 174,014 base pairs, an N50 number which

Bioluminescence either hits or nearly hits regularly.

The next response variable we will examine is the max contig length. It is likely that

the pattern of these results will be very similar to the general pattern revealed by examining

the N50 results. It is possible, however, for an assembly to have a small N50 and still have a

relatively large max contig length. The results for max contig length are reported in Figure

4.2. As the figure immediately demonstrates, the pattern of the max contig length response

variable closely follows the pattern shown in the N50 plot. All algorithms show a dramatic

drop in the max contig length as heterozygosity increases except for the Bioluminescence

algorithm.

Another interesting phenomenon related to the length of an assembly’s contigs can

occur in the presence of high levels of heterozygosity. It has been reported that for genomes

having very high heterozygosity genome assemblers will sometimes produce 2 separate contigs

for the same genomic location, one representing one haplotype and one representing the other

haplotype. When this effect is prominent the total number of bases in the assembly should

increase above the total number of bases in a monoploid representation of the genome.

In this study, we examine which assemblers produce this effect by reporting the total

number of bases assembled for each assembly. These data are reported in Figure 4.3.

It is clear from these results that the behavior of different algorithms is quite a bit

different with respect to whether or not they make the assembly much harder to interpret by

including two contigs for single locations in the genome. Newbler and Hapsembler exhibit

this behavior to the highest degree. This likely has something to do with the overlap-layout-

consensus heritage of these 2 assemblers in contrast to the primarily k-mer based approaches

of both Bioluminescence and Velvet.
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Figure 4.3: The total number of bases in each assembly.

In a somewhat surprising result Velvet actually decreases the total number of bases

as the heterozygosity rate increases over a certain range. The most likely interpretation of

this result is that Velvet is not prone to producing 2 contigs for a single genomic location

under the conditions of SNP-level variation, but that the contigs do get much smaller and in

some cases become too small to be reported in the final results (only contigs 151 base pairs

or greater are counted because this is 1 base longer than the read length), hence causing a

decrease in the total number of bases reported for that assembly.

The total number of bases produced by Bioluminescence is remarkably consistent

across all heterozygosity rates tested.
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Figure 4.4: Shows the percentage of the total number of possible haplotype switch errors
that were actually made in each assembly.

The final metric of assembly quality we will look at, and probably the single most

important result, is the haplotype-switch error percentage. The haplotype-switch error

percentage is calculated as follows. First, the total number of possible haplotype switch

errors for a given assembly is calculated. This is calculated by mapping the contigs back to

either one of the haplotypes, whichever it aligns to best. Then, if the contig covers 3 SNPs

in the alignment we know that the maximum number of haplotype switch errors for that

contig is 2. For a contig covering 5 SNPs the maximum number of haplotype switch errors

is 4 and so on. The total number of haplotype switch errors for the entire assembly is then

calculated and the actual number of haplotype-switch errors that are made is also calculated.
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These numbers are then used to calculate the percentage of possible haplotype-switch errors

that the assembler actually made for a particular assembly. If a contig has a base, at a SNP

position, that is not the base on haplotype A or the base on haplotype B this counts as a

haplotype switch error. Furthermore, because it is now impossible to say which haplotype

the contig is on at that SNP position the next SNP position in the contig will also count as a

switch error regardless of whether the base is on haplotype A or haplotype B.

This metric gives very valuable insight into how each assembler is actually producing

its contigs. As we will see this metric demonstrates conclusively that Hapsembler and

Bioluminescence far outperform their competitors in this metric, with Bioluminescence

dominating the vast majority of the range of SNP rates. These results are given in Figure 4.4.

The 2 best algorithms with regard to the haplotype-switch error percentage are

Hapsembler and Bioluminescence, with Bioluminescence being clearly the best algorithm for

the vast majority of test cases. Hapsembler performs better than Bioluminescence across

the range from 0.0% to 0.4% heterozygosity, but this is entirely to be expected because

Bioluminescence currently lacks a paired-end module. Because of this, its benefits are only

seen when the heterozygosity becomes high enough that multiple SNPs occur regularly within

the read length. Until that point there is no reason to expect Bioluminescence to have any

beneficial effect on this metric at all, which is essentially what we see.

For heterozygosity rates above 0.4% Bioluminescence demonstrates a dramatic im-

provement in haplotype-switch error rate in comparison to competing algorithms. This is the

definitive proof of the thesis statement and the primary question this study was designed to

answer. In short, the ideas Bioluminescence presents clearly show promise for improving the

assembly of heterozygous organisms.
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Chapter 5

Conclusion

Bioluminescence represents a very significant advance in the field of heterozygous

genome assembly. Its primary contribution is that it introduces an entirely novel approach

to heterozygous genome assembly that relies on coverage and advanced machine-learning

techniques to identify haplotype-specific k-mers in an assembly. Bioluminescence then

constructs alignments in which each constituent sequence of the alignment must contain a

particular k-mer which is a marker for a particular haplotype. In doing so Bioluminescence is

able to build haplotype-specific alignments and therefore, phased, haplotype-specific contigs.

This is Bioluminescence’s primary contribution and it is a completely new approach to the

problem.

It is true that many diploid genomes have heterozygosity rates that are low enough

that the techniques in Bioluminescence may provide little or no benefit, however, it is also

demonstrably true that there are many organisms whose heterozygosity rates are sufficiently

high that they could benefit from these methods. It is hard to estimate exactly what

percentage of genomes have heterozygosity rates that are high enough to benefit from the

techniques described here, but it is certain that the number is not trivial and it is likely

underestimated by the currently published literature because homozygous genomes are

preferentially chosen as assembly targets precisely because they are easier to assemble.

Via a very thorough experiment, we have convincingly shown that the ideas imple-

mented by Bioluminescence are a significant advance for the field of genome assembly and
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can be used to produce contigs from highly heterozygous input data that are generally longer

and more accurately phased than the competing algorithms tested in this study.
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